Techniquesfor delayed binding of monitoring mechanisms
to application-specific instrumentation points

Jeffrey Vetter
Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL, USA, 61801

Abstract

Online interaction with computer systems and applica-
tions allows developers to monitor, experiment with, and
debug long-running, resource-intensive applicationsat run-
time. Traditionally, developers statically bind a monitor-
ing mechanismto each application-specificinstrumentation
point. This approach has shortcomings for online, inter-
active monitoring. Namely, static binding limits portability
among monitoring systems; it may mismatch monitoring
mechanisms to interactive requests for monitoring data;
and, predictions for the performance and execution paths
of instrumentation for static bindings are I€eft to the devel -
oper. To address these concerns, we have created a new
technique called monitoring assertions that allows moni-
toring systems to delay binding of monitoring mechanisms
to application-specificinstrumentation pointsuntil runtime.
Our empirical results show that we can alter the perfor-
mance of both the applicationand the monitoring system by
removing static binding requirement of application-specific
monitoring systems.

1. Interactivemonitoring systems

Interactive monitoring systems permit users to interact
with the monitoring system during the execution of the
target application. Users can enable, disable, and recon-
figure the monitoring system to suit their exploration of
the application [19, 17, 9, 6]. These interactive monitor-
ing systems complement other forms of monitoring that use
post-mortem analysis[25, 18, 16, 2, 3], but they share with
such systems the need to analyze and display monitoring
data [20, 11, 12, 4]. The interactive monitoring systems

*NASA financially supported Vetter with a Graduate Student Re-
searchers Program Fellowship while he was a Ph.D. candidate at Geor-
gia Tech. This work was also funded, in part, by NSF equipment grants
CDA-9501637, CDA-9422033, and ECS-9411846.

Karsten Schwan
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, USA, 30332

investigated by our group are those that permit end-usersto
capture application-specific information from targets, such
as the position and velocity of molecules, or vaues of a so-
[utionmatrix inamulti-grid solver. Some online monitoring
systems, whichinclude Paradyn, Quartz, and EEL [17, 2, 3],
use modified compilers or executable editing to interrogate
the applicationfor performance-relevant information. How-
ever, we do not employ these techniques because they are
limited in the types of information they can provideto the
user [19], especially when executables are highly-opti mized
[7, 24]. Alternatively, users of application-specific mon-
itoring systems annotate their application source code to
supplement information available from these other moni-
toring methods. Our particular form of application-specific
monitoring, called event-based monitoring [13, 4, 14], pro-
duces streams of events that represent observed application
state; the user analyzes these streams judge target system
behavior.

Mativation. Application instrumentation is a primary
component of any application-specific monitoring system.
Across a wide variety of systems [23, 9], instrumentation
support may be described as follows. (1) The devel oper
chooses basic instrumentation mechanisms and annotates
the source code. (2) At runtime, the monitoring system re-
ceives data from this instrumentation. (3) The monitoring
server has limited runtime control over the instrumentation
such that it typicaly relies on instrumentation placement
to produce interesting data at appropriate rates. This static
binding of monitoring mechani smstoinstrumentation points
isunacceptabl efor interactive monitoring systemsbecauseit
isnot easy to reasonably predict the interactor’sexploration
scenario when deciding upon instrumentation mechanisms.
The developer must also predict theinteractor’s exploration
scenario to help maintain consistent (or meaningful) data
views of thetarget application.

This paper introduces monitoring assertionsthat alow
devel opers to instrument applications without forcing them
to predict how monitoring data might later be used and
without forcing them to judge a-priori which mechanisms

are most appropriate. These assertions annotate what ap-
plication data is available and when it is accessible to the
monitoring system.

Related work. Monitoring assertions are code annota
tions, we propose these assertions could be used by any
monitoring system in place of their application-specific in-
strumentation. Then, the monitoring system would query
and control the instrumentation using the 'monitoring as-
sertions' library API. Our earlier annotated bibliography
provides many references to these instrumentation systems
[10].

Tools like gprof[8] and Quartz[2] provide the user with
valuable information about execution frequency; they as-
sign elapsed time to static, syntactic units, such as pro-
cedures or statements. Additional work by Ammons and
colleagues[1] extends thiswork to use flow and context in-
formation for performance counters. Paradyn [17] provides
similar control-based application performance information;
it delays the insertion of instrumentation until requested
by the interactor, whether it is a query driven by a human
or by Paradyn’s performance consultant. These systems
[8, 2,1, 17] rely oninformation stored within the executable
by the compiler—either the instrumentation itself or instru-
mentation targets such as procedure entry points. In many
cases, thislimitation prohibitsthe use of executable editing
to observe application-specific data. An example of this
shortcoming isdescribed in §3.

Application-specific monitoring systems such as
Falcon[9] and Autopilot [21] provide their own instru-
mentation libraries and instrumentation controls. Develop-
ers insert this instrumentation into their application source
code and then, capture and analyze data produced by the
instrumentation at runtime. Unfortunately, most every
application-specific monitoring system has its own non-
portable instrumentation library. In this respect, monitor-
ing assertions could provideacommon instrumentation tool
for both application devel opers and tool developers. While
these earlier instrumentati on techniques propose variousin-
strumentation mechanisms [19, 5, 16, 23], they focus pri-
marily on the design of the monitoring system itself.

Research contributions. The novel idea of this work is
to generalize instrumentation so that the binding of specific
monitoring mechanisms to instrumentation points in target
applications is delayed until more is known about the ex-
pected use of the monitoring information (i.e., a runtime).
Note that executable editing allows the monitoring system
to delay binding until runtime; however, it then can only
bind to a limited scope of application attributes, such as
procedure entry points. Whereas, monitoring assertions a -
lows developers to introduce as many application-specific
binding points as necessary. (1) Monitoring assertions
capture the desired properties of application-specific instru-
mentation of what data to monitor and when to monitor that

data without the requirement of static binding to particular
monitoring mechanisms. (2) Instrumentation signatures
resultin our system’sability to predict monitoringoverheads
and thereby enabl e runtime choi cesin instrumentation bind-
ings based on observed patternsin instrumentation flow and
frequencies. These signatures are derived from reference
executions of instrumented applications. (3) Empirical eval-
uations of monitoring assertions and instrumentation signa-
turesdemonstrate the utility of delaying mechanism binding
until runtime,

Sample applications. Two applications demonstrate our
ideas. Heat diffusionisa27-point, 3D-stencil, time-stepped
simulation [22] implemented with kernel-level threads for
SMP platforms. This simulation exhibits nearest neigh-
bor sharing common to many simulations of physical sys
tems. A more complex example isprovided by the Splash 2
OCEAN benchmark. The Ocean benchmark simulates eddy
and boundary currentsin acuboidal ocean basin. The appli-
cation uses finite differencing CFD with aregular grid. The
algorithmuses ared-black Gauss-Seidel multi-grid equation
solver; each time-step of the simulation involves setting up
and solving a set of spatid partial differentia equations.
Experiment platform. The experimenta platformisanet-
work of 4 two-processor Sun Ultra 2 Model 2148s (148
MHz UltraSPARC CPU). Each system has 128MB of main
memory and they run Solaris 2.5.1. Although this work
focuses on shared memory architectures, we are not avare
of any fundamental design restrictionssuch that monitoring
assertionscould not work inamessage passing environment.
Paper outline. §2 reviews application instrumentation in-
cluding various mechanisms and characteristics. §3 and §4
explain the technique of monitoring assertions and instru-
mentation signatures, respectively. §5 reveals our conclud-
ing thoughts and some future research issues.

2. Background: application instrumentation

Typicd online monitoring systems have four basic com-
ponentsasillustratedinFig. 1: system software, application,
monitoring server, and interactor. Systems that broadly fit
thismodel include Paradyn [17], Falcon [9], Magellan [22],
Avatar [20], Vista[23], and various debuggers. We assume
no special operating system, special compilers, or hardware.
The interactor controls the server; it specificaly provides
user interface and visualization capabilities. The server is
generally a separate process or thread that communicates
with the application via shared memory or IPC.

Application-specific instrumentation is represented as
software statements added to the target application [19, 5,
16]. This instrumentation gathers data about the applica
tion's execution, packages it, and sends it to some higher-
level monitoring system. Thisinstrumentationhastwobasic
objectives. (1) instrumentation identifies which application

Application

Monitoring system
Interactor
IStorage| Y
=y [Monitoring server
l \l
p7 |
/ ™ |

App Data /!

System Software

Threads encounter |
instrumentation points
and generate data '

Monitoring server polls
. incoming interactor
nmcicrg?ﬂsrems may commands as well as
- . instrumentation buffered monitoring
Monitoirng data is data
uffered

Certain monitoring Interactor supervises

monitoring of application
and analyzes monitoring
data

Figure 1. Typical model for an interactive
monitoring system.

data the monitoring system can observe; and, (2) instru-
mentation identifies when the monitoring server can safely
observe application data; thereby addressing both the valid-
ity of the each observed dataitem aswell asthe consistency
of multipledataitems.

Thefollowing codeillustrates applicati on-specific moni-
toring instrumentation for the Magellan computational steer-
ing system, which supports interactive monitoring. This
code istaken from the Splash 2 Ocean benchmark.

AS_Regi ster Obj ect (steer, "residual nornt,
&multi->err_multi, AST_DOUBLE, 0, &sResNorn;
AS_Sense(sResNorn ;

During initiaization, the Magellan instrumentation reg-
isterstarget datausingthecall AS_Regi st er Cbj ect and
providing the name, type, size, and address to the runtime
Magellan server. Next, a sensor is placed in the loop us-
ing AS_Sense to provide controlled access to these regis-
tered objects. Magellan need only enablethese AS_Sense
instrumentation points to receive periodic updates for this
application variable.

To reason more specifically about instrumentati on points,
we now introduce some terminology. A static instrumen-
tation point isuniquely identified by itslocation withinthe
source code: a filename and line number. Py jine de-
scribes this static instrumentation point. For convenience,
we collapse I Pyie 1ine into auniqueidentifier: sid.

At runtime, however, this stati c description does not pro-
vide enough information to the monitoring system. In one
scenario, multiplethreads can execute the same instrumen-
tation point, so the instrumentation point must also provide
a thread (or process) identifier tid and context (or stack
frame) information—s f—for scoping and recursion. Without

additiona compiler support, we currently do not explore use
of sf to extend sid. Adding ¢id, aruntime instrumenta-
tion point (rid) is uniquely identified by sid and tid; or,
f(sid, tid) — rid.

In addition to the information generated by instrumen-
tation points, the monitoring system may also accumulate
and observe information about the instrumentation itself.
The monitoring system tracks the number of times instru-
mentation points are encountered by application threads as
well asthe number of times dataitems are actually observed
by each instrumentation point. A hit occurs when an in-
strumentati on point isencountered by an application thread.
Hits(sid) givesthenumber of totd hitson sid by any thread
while Hits(sid, tid) gives the number of total hits on sid
by thread tid. For example, every time any thread executes
the AS_Sense instrumentation point, it counts as one hit.
A captureisahit where the instrumentati on point observes
application state and forwards it to the monitoring system.
Captures(sid) gives the number of total captures on sid
by any thread while C'aptures(sid, tid) gives the number
of total captures on sid by thread ¢id. All captures are
necessarily hits; however, hitsare not necessarily captures.

An event ¢.;4 is a quad-tuple containing an event class
descriptor (class), atimestamp (7'5), alocation (loc) and
state (S): eciq = (class, T'S,loc, S). A uniqueevent identi-
fier (eid) identifieseach event. T'imestamp(e.;q) furnishes
the timestamp of the event ¢.;4. The instrumentation point
generates the event timestamp when it creates the event.
Loc(eciq) furnishes the originating location of e.;4 which
includesthetid aswell as sid. State(e.;q) alowsthemon-
itoring system to access the event’s state. State sizes vary
for different event classes, so Size(eqq) furnishesthe state
size of theevent e 4.

2.1. Instrumentation mechanisms

We consider four types of instrumentation mechanisms:
tracing sensors, sampling sensors, snapshot sensors, and
synchronous probes. For these definitions, assume that each
of themechanisms are enabled and that rid has Hit(rid) =
n.

A tracing sensor installed at rid captures n events ¢
and forwards each event to the monitoring server via a
FIFO shared buffer. Captures(rid) = Hits(rid) = n.
Fig. 2(a) furnishes the pseudo code for a tracing sensor
instrumentation point. All events generated by a tracing
sensor are consumed by the monitoring server. The appli-
cation thread must contend with the monitoring server for
exclusive access to the FIFO buffer. If the non-blocking
buf f er insert fails, then theapplication must retry the
insert. Thebuf f er i nsert couldfail because either the
FIFO iscurrently locked or it isfull.

A sampling sensor captures (Hits(sid)/wsampling)

trace-sensor (datahandle)
hits++
if enabled
captures++
alocate event
copy datahandleto event
package event
while buffer insert fails

buffer insert event

return

sampling-sensor (datahandle)
hits++
if enabled

if (hit % samplfreq) ==
captures++
alocate event
copy datahandleto event
package event
while buffer insert fails
buffer insert event

snapshot-sensor (datahandle)

hits++

if enabled
captures++
lock shared area
copy datahandleto shared area
update shared area attributes
unlock shared area

return

synch-probe (datahandle)
hits++
if enabled
captures++
mondata = datahandle
barrier (monitor thread)
barrier (monitor thread)
return

return

(a) tracing (b) sampling

(c) snapshot sensor (d) synchronous probe

Figure 2. Monitoring mechanism pseudo-code.

events and forwards these events to the monitoring server
via a FIFO shared buffer. With wiampiing > 1,
Captures(rid) < W A tracing sensor is a sam-
pling sensor where wsanfpliig = 1. Fig. 2(b) outlines the
operation for a sampling Sensor. wsampiing €aN change dy-
namically.

Fig. 2(c) defines the operation of a snapshot sensor that
captures n events but stores only one event in ashared loca
tion instead of placing it in a FIFO buffer. The application
instrumentation overwrites this stored event with the most
recent event. The monitoring server then reads this shared
location to find this event.

A probe directly reads application memory without syn-
chronizing with the application through an instrumentation
point. Origina probes19] have no corresponding »id. The
monitoring system copies the data immediately upon re-
guest. Thislack of synchronizationlimitsprobe state sizeto
machine-dependent datasizes. Dueto thislimitation, we do
not study normal probesin detail; however, we do introduce
synchronous probes as an aternative.

A synchronous probe synchroni zes execution of the mon-
itoring server and the application thread at rid. Once the
synchronization occurs, the monitoring server copies ¢¢;q
directly from the stalled application. No datais buffered be-
tween the application and the monitoring server. Fig. 2(d)
illustrates the primary differences in operation of a syn-
chronous probe from the previous constructs.

2.2. Instrumentation characteristics

Each of these instrumentation mechanisms have quan-
tifiable impacts on the application and the monitoring sys-
tem including application perturbation, monitoring latency,
potential monitoring frequency, and the consistency of the
monitoringinformation. Wedefine~ asaglobal clock avail-
able to the application, instrumentati on poi nts, the monitor-
ing server, and the interactor.

Each rid has a time associated with its execution. In-
strumentation point execution time, Agcecution(rid) =

Ystop —Vstart, iSthedifferenceintimefromthecall tothere-
turn of the instrumentation point 7id. ThiSApgecution (rid)
captures the time the i nstrumentati on waits on mutex locks,
full buffers or other costs.

Small changes in application instruction sequences from
thisinstrumentation can result in substantial aggregate per-
formance perturbation[15]. We measure this aggregate per-
turbation instead of the execution time of each individual
instrumentation point. Application runtime, Tappiication =

application application

Ystop e , istheruntime of the original ap-
plication without any instrumentation points. Instrumented
application runtime, Tinstrumentea = Yapar vmented —
yinstrumented g the runtime of the instrumented ap-
plication. Application perturbation, Apcrturbation =
Tinstrumented — Tapplication, 1S the difference in the run-
time of the instrumented application minus the runtime of
theoriginal application. Application perturbation slowdown
is the ratio of instrumented runtime to origina application
runtime: T:pfpl“imt"’nd Aperturbation 1S @ function instru-
mentation mechanisms used throughout the exploration of
the target application. It is our experience that aggregate
Aperturbation > 0 and perturbation slowdown is greater
than 1. For our evaluation, we lock the instrumentation
pointsto one mechanism for each benchmark’s duration.

Tab. 1 detail sthese measurements for two exampl e appli-
cations. Each application used two processors. Optimized
mode used compiler option - G, debug mode using com-
piler option - g; gprof mode used option - xpg - Oon the
SUNWSspro compiler. Optimized/ma mode is the perfor-
mance of the optimized application with additional moni-
toring assertions instrumentation. As we expected, debug
mode increased the runtimes of each application consider-
ably. Gprof has a aggregate perturbation of 28-33%. Mon-
itoring assertions produced on 1-3% aggregate perturbation
onthetarget applications. Total hitsrepresents thecumula
tive sum of all assertion hitsduring execution of the applica-
tion. We certainly expect a more thoroughly instrumented
version of either application to produce more perturbation;

Avg |
Application State Runtime 19? Ratio
(se0) its
OCEAN Opt 336 - 1
Opt/ma 337 3110 101
Opt/gprof 430 - 1.28
Debug 697 - 2.07
Stencil Opt 124 - 1
Opt/ma 128 202 1.03
Opt/gprof 165 - 133
Debug 252 - 2.03

Table 1. Application performance under dif-
ferent instrumentation scenarios.

however, this anadysis demonstrates that the perturbation
from monitoring assertionsis not inherently limiting.

Online monitoring systems obvioudly require some la
tency to capture, transport, and analyze their data. Thisla
tency isafunction of many factorsincluding instrumentation
mechanisms. Here, weareprimarily interested inthelatency
between the event generation by applicationinstrumentation
and event consumption by the monitoring server. Buffer
management can also alter the latency of the system[9, 23];
we hold buffer parameters constant across our evaluations.

Event latency, AS'Y, .., = 7—T'S(cciq), isthedifference
of the current time from the timestamp on the event ¢.;4 as
observed by the monitoring server. Assuming acorrect glob-
aly consistent clock with infiniteresolution, v > T'S(eciq)
and Ail(jltency > O

2.3. Perturbation and latency evaluation

Each of our earlier defined mechanisms have differ-
ent perturbation and latency characteristics. To measure
these characteristics, we have created micro-benchmarks
and then, monitored those micro-benchmarkswith the Mag-
ellan system[22]. Asthe code below illustrates, the bench-
mark is aloop that accesses ar r ay with sizedat asi ze.

int array[datasize]

start tiner

for ITER

do
incr all elenents of array
I nstrunentation point(array)
del ay

done

stop tiner

Perturbation is measured by subtracting the wall-clock
time of the uninstrumented loop from the wall-clock time
of theinstrumented loop. The monitoring server calculates
latency with each ¢.;4 timestamp and the same machine
clock. Thisclock’s resolution is microseconds.

Figs. 3and 4 illustratethe clear differencesin the pertur-
bation and latency characteristics of tracing sensors, sam-

10000

trace <—
snap —+-

. #'sample 30 -
sample 100 -+~
1000 F 4

Avg perturbation (usecs)
.
5
8

10 |

X
Quk N

ey
.

e

e x b xo

o bk
k% » ¥ o
S
13
x
*

1 1
1000 10000 100000 1le+06
Event size (bytes)

Figure 3. Average perturbation per instru-
mentation point versus event size.

pling sensors (wsampiing = 30), Snapshot sensors, and syn-
chronous probes. Characteristics such as buffer properties
and interference have been studied by Waheed and asso-
ciates, and Gu and colleagues [23, 9]. We recognize these
issues by assuming a reasonable buffer size and a steady-
state computer system.

Fromthisanalysis, we see that all perturbation increases
with data size. Tracing sensors impose the highest pertur-
bation on the application while sampling sensors have the
lowest overal perturbation. However, this sampling sensor
perturbation varies with wampiing . Event latency for trac-
ing and sampling sensors is amost identical regardless of
data size because the underlying data structures are similar.
the latency for synchronous probes and snapshot sensorsis
very predictable, increases with data size, and isamost two
orders of magnitude better than either tracing or sampling
SeNnsors.

Given these clear differences, it is best to match the ap-
propriate mechanism to current interactive monitoring re-
guests. Our monitoring assertions allow dynamic binding of
these mechani sms to the appropriate i nstrumentati on points
for each monitoring request. The monitoring system can
choose which mechanism to employ.

3. Monitoring assertions

Asin the earlier Magellan example, the instrumentation
mechanisms are bound at compile time. AS_Sense dic-
tatesthat the mechanism used tomonitor sResNor m etc. is
alwaysasensor. If theinteractivemonitoringsystem needsa
different type of mechanism such as a synchronousprobeto
minimize latency, then the user would have to re-instrument
the application and recompile.

10000

1000

Avg event latency (usecs)
.
5
8

1 1 1 1
1 10 100 1000 10000 100000 1e+06
Event size (bytes)

Figure 4. Average latency per event versus
event size.

Monitoring assertions help solve this problem by pro-
vidingthe monitoring systemwith amethod for dynamically
binding these mechanisms to the assertions. Monitoring as-
sertions alow the developer to generaly instrument their
application by identifying which datais available for mon-
itoring and when this data is observable. They are annota
tions that a developer adds to source code. So, as a result
of the scenario depicted in the Magellan example, that code
becomes Fig. 5, where mechanisms are replaced by asser-
tions. Developers can aso limit the types of mechanisms
that can be used at individual assertionsthat further limit the
choices available to the monitoring system when selecting
mechanisms.

Given our earlier analysisof different monitoring mecha
nisms, the following scenario illuminates the advantages of
monitoring assertionsover previously-discussed monitoring
instrumentation. In Fig.5, the monitoring system can make
different choices about which monitoring mechanisms to
use at AAA Access hased on interactive requests.

If the user needs to track a variable such asr esNor m
with size 8 bytes, then the monitoring system could easily
choose a snapshot sensor because it provides the best per-
turbation (from Fig. 3) with the second best latency of 7
microseconds (see Fig. 4). Synchronous probes providethe
best latency at 8 bytes; however, the latency improvement is
very small and synchronous probe perturbation is higher.

If the user wantstodisplay alarger dataitem or additional
data items, then the monitoring system must reeva uate its
instrumentation choices. If the user requests the variable
f with size 4112, the monitoring system can choose sam-
pling sensors (wsampting = 30) with the best perturbation.
At large data sizes, the data copying dominates the latency
costs; therefore, al mechanism latencies converge toward a
common latency cost. Thisfact effectively reducesthe mon-

AAA doubl e(rmul ti->err_multi); /* resNorm*/
AAA int (k); /I* level */
while ((!'flagl) && (!flag2)) {

/* ...code omtted... */

AAA Access(multi->err_multi,w,iter,

k, f,tol erance);}

Figure 5. Splash2 Ocean with monitoring as-
sertions.

itoring system'’s choice dimensions to perturbation, which
favors sampling sensors for this example.

Without monitoring assertions, the monitoring system

would be unabl e to combineinteractive monitoring requests
withitsknowledgeabout applicationinstrumentationto pro-
vide these optimized solutions.
L ocalized application de-optimization. Most large-scale,
high performance appli cationshave thousands of dataitems
of which only asmall portionare useful for monitoring. Us-
ing application-specific knowledge, the developer chooses
which datato makeavailable and when. By placing the mon-
itoring assertions in the code, the developer also chooses
how to | ocali ze de-optimizations. Namely, in contrast to de-
optimi zations performed when using general debug options
(e.g., - 9) provided by compilers, monitoring assertions re-
sult in de-optimizations only for the specific code compo-
nents where they are placed. Monitoring assertions can be
easi|y disabled with command line switches or preprocessor
directives.

The developer controls the tradeoff between the avail-
ability of monitoring data a runtime and compiler opti-
mizations. |f the devel oper wants access to certain data at
runtime, then such a de-optimization may be acceptable.
In fact, the extraction of such data from highly-optimized
code may be extremely difficult and even misleading[7, 24]
without these local de-optimizations.

3.1. Source code annotations

Monitoring assertions have two different forms: one to
declare dataand one to access declared data. An application
first must declarewhich application-specific dataisavailable
for interactivemonitoring; then, at various placesthroughout
the code, the application allows access to that declared data
viaassertions.

Declarations. Declarations provide monitoring assertions
with typeand scoping information whilelimiting theamount
of data items available to the interactor. Compiler support
for declarations would reduce the instrumentation for this
declaration statement to a simple tag on the language vari-
able declaration (eg., nonitor int iter;). Figs 5
illustrates a declaration sequence for a set of variables. As

inFig.5, these declarations are currently preprocessor direc-
tives, AAA i nt (k) , that expand into aprocedurecall with
parameters for name, type, address, size, thread identifier,
filename and line number:

aaa_decl _data("k", AAA I NT, &k,
sizeof (k), tid, "slavel.c", 689)

The declaration for each nane must occur prior to any
access pointsusing that name.

When thiscall is executed by the application with moni-
toring assertions, it storesthisinformation. Later, thisinfor-
mation can be written to an instrumentation signatures his-
tory file (see §4). Theaaa_decl| _dat a cdl first checks
nane to determine if it is aready registered. If nane
does not exist, then it creates a table entry and initializes
statistics for that name. If it does exist, then it verifies the
instrumentationlocation(i.e., linenumber and file name). If
nare has been defined at another instrumentation location,
aaa_decl _dat a indicates a name collision and does not
register the offending name. If the static instrumentation|o-
cation (sid) verifies, then it checks the thread identifier tid.
If tid exists, then just the statistics are updated. Otherwise,
monitoring assertionscreates anew runtimeinstrumentation
location (rid) and adds thisinformationto the existing static

instrumentation location in the registry.

Access points. Once data has been declared, monitoring
assertions require control flow information about how the
monitoring system can 'safely’ access these data items at
runtime. An assertion tellsthe monitoring system when the
datais semantically meaningful as defined by the devel oper
aswell aswhenitisnot being accessed by the current thread.
These assertions are currently preprocessor directives that
expand intoaprocedurecall with parameters for thread i den-
tifier, filename, line number and a list of pairs of name and
address. InFig. 5, AAA Access(nul ti->err_multi,
wu, iter, k, f, tol erance) expandsto

aaa_access(tid, "slavel.c", 704,
"mul ti->err_multi", & multi->err_nmulti),
W, &(wu) NULL);

When thiscall is executed by the application with monitor-
ing assertions, aaa_access acts like a declaration. The
aaa_access cal checks the static instrumentation loca
tion (sid) to determineif itisaready registered. If sid does
not exist, then it createsatableentry and initiaizesstatistics
for that location, else it checks the thread identifier tid as
wel asthedataitemsinthelist. If tid exists, then only the
statistics are updated. Otherwise, the monitoring assertion
creates a new runtime instrumentation location (rid) and
adds it to the static instrumentation location in the registry.
Essentially, an unlimited number of declared dataitems can
belistedwitheach aaa_access cal. At each appearance
of anew sid, the system verifies the data items are previ-
oudly declared using nane to scan the declared data table.
This providesthe sid with type and size information.

4. Instrumentation signatures

Instrumentation signatures further augment monitor-
ing assertions by providing a runtime history of an applica
tion's instrumentation. These signature files capture three
basic characteristics. declarations, instrumentation points,
and per-thread statistics about the number of hits on each
instrumentation point (i.e., Hits(sid, tid) and Hits(sid)).
The monitoring system can use this information to deter-
mine how to bind mechanisms to access points so that per-
formance is optimized. Signatures are generated when the
target system is executed in reference run mode; signatures
are then used at runtime to determine what data is avail-
able and to help predict which instrumentation points best
satisfy data rates for the interactive requests. Instrumen-
tation signatures do provide information unavailable with
compile-time anaysis and executable editing. In general,
instrumentation signatures are afunction of the application,
its particular monitoring assertions, input data, and other
system conditionssuch as the number of threads used by the
application.

A reference run will produce only an initia guess about
the instrumentation signatures value. For therelatively sta-
ble scientific applications considered in our research, this
guessis reasonable and is not subject to frequent changes.
Declarations. The declaration section details an applica
tion component’s name, location, type, size and its unique
identifier. Declarations providetypeand sizeinformationto
monitoring assertions.

Instrumentation points. The instrumentation points sec-
tion details al instrumentation points encountered during
the reference run. Each line contains the location of thein-
strumentation point, aunique identifier and al the declared
application componentsthat are available at that instrumen-
tation point. Using this knowledge, an interactive monitor-
ing system can quickly determinewhat datais available and
at what rates.

Statistics. The statistics section provides frequencies of
execution of each instrumentation point including total hits
Hits(sid) as well as hits per thread H its(sid,tid)—both
rav and normalized statistics. Using this information, a
monitoring system can choose instrumentati on points based
on their expected I its(sid).

5. Conclusions

Wehaveintroduced monitoring assertionsandinstrumen-
tation signatures as two new techniquesto help improve the
efficiency and usability of monitoring systems. Monitoring
assertionsgeneralize appli cation-specific instrumentation so
that monitoring systems can dynamically control the bind-
ing of instrumentation points to monitoring mechanisms.
Dynamic binding and the use of consistency information

can improve application perturbation and monitoring laten-
cies. In addition, instrumentation signatures may be used
to predict the frequencies and performance of instrumenta-
tion. Currently, aClibrary alowstoolsto dynamically bind
mechanisms to these assertions.

Compiler integration of monitoring assertionscould dras-
tically ater their utility and efficiency. Application-specific
instrumentation usually must supplement information gath-
ered from other compiler-provided sources. If our monitor-
ing assertions were integrated with a compiler, they could
provide the following advantages: (1) use of compile-time
type information to automate the instrumentation process;
(2) integrate data dependency information with monitoring
assertions to rearrange and combine assertions to improve
performance; and, (3) use stack frame information to make
monitoring assertions more precise.

References

[1] G. Ammons, T. Ball, and J. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling.
In Proc. ACM SIGPLAN Programming Language Design
and Implementation (PLDI), 1997.

[2] T. Anderson and E. Lazowska. Quartz: A tool for tuning
parallel program performance. In Proc. 1990 SGMETRICS
Conf. Measurement and Modeling Computer Systems, pages
115-125, Boston, 1990.

[3] T.Bal and J. Larus. Optimally profiling and tracing pro-
grams. ACM Trans. Programming Languages and Systems,
16(4):1319-60, 1994,

[4] P Bates. Debugging heterogeneousdistributed systems us-
ing event-based models of behavior. ACM Trans. Computer
Systems, 13(1):1-31, 1995.

[5] D. Bhatt. Scalable parallel instrumentation (SPI): an envi-
ronment for developing parallel system instrumentation. In
Proc. Intel Supercomputer Users Group Conf., pages 98—
104, 1994.

[6] D.Brown, S. Hackstadt, A. Malony, B. Mohr, J. Dongarra,
and B. Tourancheau. Program analysis environments for
parallel language systems: the tau environment. In Proc.
Second Workshop on Environments and Tools for Parallel
Scientific Computing, pages 162—71, 1994.

[7] M. Copperman and C. McDowell. A further note on hen-
nessy’s 'symbolic debugging of optimized code’. ACM
Trans. Programming Languagesand Systems, 15(2):357-65,
1993.

[8] S. Graham, P. Kessler, and M. McKusick. Gprof: A call
graph execution profiler. SSIGPLAN Notices (SSGPLAN '82
Symp. Compiler Construction), 17(6):120-126, 1982.

[9] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko,
J. Vetter, and N. Mallavarupu. Falcon: On-line monitor-
ing and steering of large-scale parallel programs. In Proc.
Frontiers of Massively Parallel Computation, 1995.

[10] W. Gu, J. Vetter, and K. Schwan. An annotated bibliog-
raphy of interactive program steering. SIGPLAN Notices,
29(9):140-8, 1994.

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

S. Hackstadt, A. Malony, L. Bouge, P Fraigniaud,
A. Mignotte, and Y. Robert. Distributed array query and
visualization for high performance fortran. In Proc. Euro-
Par '96 Parallel Processing., pages 5563, 1996.

E. Kraemer and J. Stasko. The visualization of parallel sys-
tems: An overview. Jour. Parallel and Distributed Comput-
ing, 18(2):105-117, 1993.

J. Kundu and J. Cuny. A scalable, visual interface for de-
bugging with event-based behavioral abstraction. In Proc.
Fifth Symp. the Frontiersof Massively Parallel Computation,
pages472-9, 1995.

A. Malony. Event-based performance perturbation: a case
study. SSIGPLAN Notices(Third ACM SIGPLAN Symp. Prin-
ciplesand Practice of Parallel Programming), 26(7):201-12,
1991.

A. Maony, D. Reed, and H. Wijshoff. Performance mea-
surement intrusion and perturbation analysis. |EEE Trans.
Parallel and Distributed Systems, 3(4):433-50, 1992.

D. Marinescu, H. Siegel, J. Lumpp, and T. Casavant. Mod-
els for monitoring and debugging tools for parallel and dis-
tributed software. Jour. Parallel and Distributed Computing,
9:171-184, 1990.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall.
The paradyn parallel performance measurement tool. Conm+
puter, 28(11):37-46, 1995.

B. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S.
Lim, and T. Torzewski. IPS-2: The second generation of a
parallel program measurement system. |EEE Trans. Parallel
and Distributed Systems, 1:206-217, 1990.

D. Ogle, K. Schwan, and R. Snodgrass. Application-
dependent dynamic monitoring of distributed and parallel
systems. |EEE Trans. Parallel and Distributed Systems,
4(7):762-778, 1993.

D. Reed, K. Shields, W. Scullin, L. Tavera, and C. Elford.
Virtual reality and parallel systems performance analysis.
Computer, 28(11):57—67, 1995.

R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot:
adaptive control of distributed applications. In Proc. Seventh
IEEE Int'l Symp. High Performance Distributed Computing,
1998.

J. Vetter and K. Schwan. High performance computational
steering of physical simulations. In Proc. Int’l Parallel Pro-
cessing Symp., pages 128-132, Geneva, 1997.

A. Waheed and D. Rover. A structured approach to in-
strumentation system development and evaluation. In Proc.
Supercomputing 95, pages 1-1, 1995.

R. Wismuller. Debugging of globally optimized programs
using dataflow analysis. S GPLAN Notices(ACM SIGPLAN
'94 Conf. Programming Language Design and Implementa-
tion), 29(6):278-89, 1994.

J. Yan, E. Hesham, and B. Shriver. Performance tuning with
AIMS-an automated instrumentation and monitoring system
for multicomputers. In Proc. Twenty-Seventh Hawaii Int’l
Conf. System Sciences. Vol.lI: Software Technology, pages
625-33, 1994.

